2

Formulação Matemática

De acordo com Burger et al. (1981) os possíveis mecanismos responsáveis pela deposição da parafina são: difusão molecular, difusão Browniana, dispersão cisalhante e ação gravitacional. O modelo de difusão molecular tem sido amplamente utilizado como o mecanismo dominante (Ribeiro et al., 1997, Fusi, 2003). Contudo, de acordo com Azevedo e Teixeira (2003) não há evidências experimentais que confirmem que a difusão molecular é o mecanismo dominante. Visando compreender o fenômeno e permitir investigação de diferentes modelos Leiroz (2004) criou um banco de dados, referente a deposição de parafina em uma geometria simples, de seção transversal retangular. No presente trabalho, dois modelos de difusão molecular foram desenvolvidos para prever a deposição da parafina em um duto exatamente igual ao utilizado por Leiroz (2004).

Neste capítulo é apresentada a modelagem matemática utilizada para prever a deposição de parafina. A deposição da parafina é modelada considerando somente difusão molecular, a qual é regida pela Lei de Fick. Considerou-se dois modelos, o primeiro modelo simples, unidimensional, sendo a deposição da parafina determinada a partir do campo de temperatura, como normalmente encontrado na literatura disponível (Burger et al., 1981). Já o segundo modelo é bidimensional, e a deposição é determinada a partir do campo de concentração da parafina diluída no óleo.

No presente trabalho a geometria e condições de operação estudadas são similares às utilizadas por Leiroz (2004) no seus experimentos, visando comparar os resultados dos modelos desenvolvidos no presente trabalho com os dados experimentais.

2.1 Breve Descrição do Experimento de Leiroz (2004)

Para garantir a comparação dos resultados numéricos com os dados experimentais, é preciso conhecer a geometria e dimensões da seção de teste, condições inicias e de contorno, propriedades termofísicas do fluido e o procedimento para a obtenção dos dados experimentais, o qual é descrito a seguir.

A fig. (2.1) mostra a bancada experimental onde Leiroz (2004) realizou o estudo de deposição de parafina. O canal retangular, onde o teste foi realizado, é ligado a dois reservatórios contendo a mistura de óleo mineral com parafina: um reservatório(a) maior a montante do canal e um reservatório(b) menor a jusante do canal. Uma bomba de cavidade progressiva succiona o fluido do reservatório menor e o entrega a outro reservatório(m) maior. A experiência é realizada em um circuito aberto, visando garantir que a concentração da parafina na entrada do canal seja constante, pois em operações de circuito fechado, o retorno do líquido é direcionado ao tanque conectado à entrada do canal, o que pode causar redução da concentração da parafina no óleo na entrada do canal.

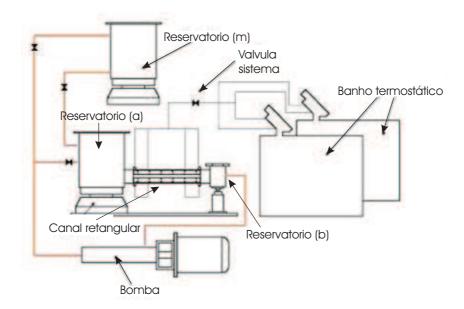


Figura 2.1: Vista esquemática da bancada experimental projetado por Leiroz (2004) (Cortesia de Leiroz).

A mistura de óleo e parafina é mantida no reservatório(a), fig. (2.1), à temperatura de 40 °C, a qual é superior à temperatura inicial de aparecimento de cristais de parafina (TIAC), que é igual a 36,6 ° C. A mistura

entra no duto de seção retangular a uma temperatura aproximadamente uniforme e com fluxo de massa constante.

O duto é formado por duas regiões, denominadas: região de entrada e região de teste, tal como é mostrado na fig. (2.2).

- 1. Região de entrada: Nesta região o duto retangular é de acrílico e encontra-se entre o reservatório e a região de teste. A perda de calor nesta região é somente para o meio ambiente, sendo relativamente pequena, devido ao pequeno comprimento do canal e à baixa condutividade térmica do acrílico.
- 2. Região de teste: Neste região, as paredes laterais do canal são de vidro, de forma a permitir uma boa visualização do processo de deposição. Novamente, a perda de calor para o ambiente é pequena devido à baixa condutividade térmica do vidro. As superfícies inferior e superior da seção de teste são de cobre, por onde externamente circula água proveniente de um banho termostático. Nestas superfícies, a perda de calor é alta devido à alta condutividade térmica do cobre e à grande diferença de temperatura entre o fluido e a superfície externa do cobre. A água é mantida no banho termostático a 15°C.

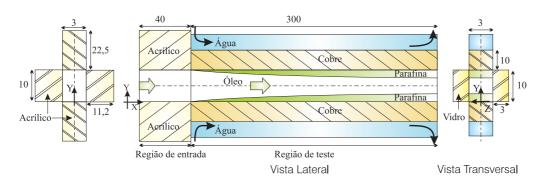


Figura 2.2: Vista lateral e transversal do duto retangular projetado por Leiroz (2004), cotas em mm.

A experiência começa com a mistura óleo/parafina escoando em regime permanente, com temperatura aproximadamente constante e igual à temperatura do reservatório(a). Isto é obtido ao se utilizar água quente (40 °C) no banho termostático, fig. (2.1)) com a mesma temperatura que o óleo no reservatório. Uma vez que a temperatura é acima da TIAC, pode-se garantir que não existirá nenhuma parafina depositada.

Após a condição de regime permanente ter sido atingida, a água que circula internamente pelo cobre, fig. (2.2), é esfriada a uma temperatura

inferior à TIAC, igual a 15 °C, iniciando o processo de deposição de parafina na região de teste.

Além da medição da espessura de parafina depositada e da visualização do fenômeno, Leiroz (2004) mediu experimentalmente diversas propriedades da mistura óleo/parafina, como por exemplo, viscosidade, densidade e solubilidade, as quais dependem da temperatura e são apresentadas a seguir.

2.1.1 Massa Específica da Mistura Óleo Spindle/parafina

A mistura Óleo Spindle/parafina utilizada é composta de 90% de óleo Spindle e 10% de parafina. A variação da massa específica da mistura em função da temperatura (°C), foi obtida experimentalmente por Leiroz (2004) e encontra-se ilustrada na fig. (2.3). A equação que melhor ajusta os dados experimentais é:

$$\rho_m = 862 - 0,495 T. \tag{2-1}$$

Vale notar que na faixa de temperatura da presente análise, a massa específica varia somente de 855 kg/m^3 a 842 kg/m^3 , o que corresponde a variação de 1,5 %.

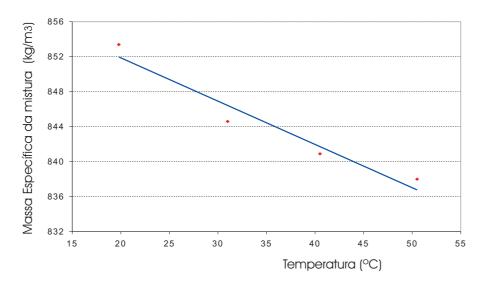


Figura 2.3: Curva da massa especifica da mistura óleo Spindle/parafina, em função da temperatura (°C). Linha de tendência foi ajustada a os dados experimentais obtidos por Leiroz (2004).

2.1.2 Viscosidade da Mistura Óleo Spindle/Parafina

Leiroz (2004) mediu experimentalmente a viscosidade dinâmica do óleo Spindle μ (kg/ms) em função da temperatura $T(^{o}C)$. Observa-se que a viscosidade dinâmica apresenta uma dependência significativa com a temperatura. A curva que ajusta os dados experimentais apresentados na fig. (2.4) é

$$\mu_m = 1,031 \ T^{-1,28} \tag{2-2}$$

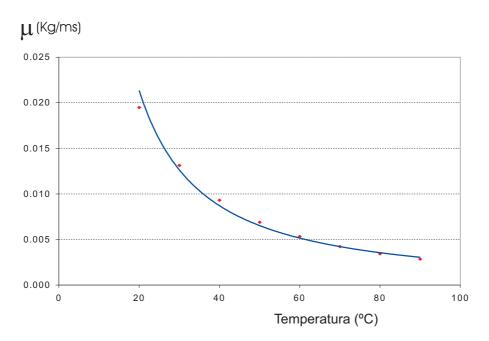


Figura 2.4: Curva da viscosidade da mistura em função da temperatura (°C). Linha de tendência foi ajustada a os dados experimentais obtidos por Leiroz (2004).

2.1.3 Solubilidade da Parafina

Um parâmetro muito importante para a análise da deposição da parafina é a solubilidade da mesma no óleo. Leiroz (2004) mediu experimentalmente a concentração de saturação da solução óleo/parafina dada em gramas de soluto por grama de solução $\omega(g/g)$ em função da temperatura(°C), fig. (2.5). A equação que melhor ajusta os dados experimentais é:

$$\omega = 1,021 \times 10^{-9} \times T^{5,133} \tag{2-3}$$

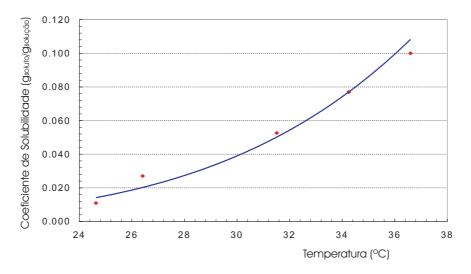


Figura 2.5: Curva de solubilidade da parafina em função da temperatura para a solução óleo Spindle/parafina. Linha de tendência foi ajustada a os dados experimentais obtidos por Leiroz (2004).

2.2 Modelo Físico

O fenômeno de deposição da parafina pertence a uma classe de problemas denominada mudança de fase, a qual apresenta fronteira móvel. A solução desta classe de problemas envolve uma dificuldade inerente ao processo que é o movimento da interface entre as fases sólida e líquida. Como conseqüência, a localização da interface sólido/líquido não é conhecida a priori, tornando-se parte da solução.

No presente trabalho considerou-se que o mecanismo responsável pela deposição da parafina é a difusão molecular. Este fenômeno depende do campo de velocidade, temperatura e concentração da parafina no óleo. A fig. (2.6) apresenta a vista lateral e transversal do volume de controle elementar no qual centraliza-se a presente análise.

Para escrever as equações de conservação que governam este fenômeno, diversas hipóteses foram utilizadas de forma a facilitar a obtenção da solução.

A mistura óleo-parafina é formada por hidrocarbonetos com alto peso molecular, porém apresentam comportamento Newtoniano. Apesar de Leiroz (2004) ter verificado variação das propriedades com a temperatura, optou-se no presente trabalho, por simplicidade, por considerar as propriedades constantes. Somente a dependência da solubilidade da parafina no óleo com a temperatura foi considerada, por ser uma grandeza crítica para avaliar a deposição da parafina.

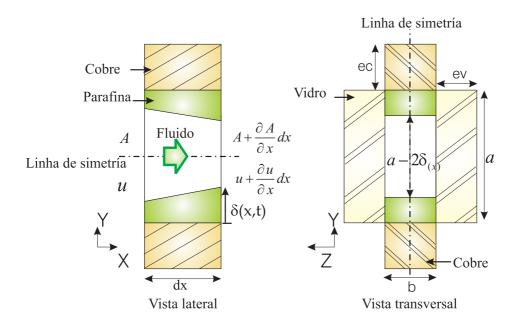


Figura 2.6: Volume de controle elementar do problema em questão.

Devido a alta viscosidade do óleo e pequena dimensão da seção de teste, o escoamento pode ser considerado como laminar.

O processo de deposição de parafina somente ocorre para temperaturas inferiores ao ponto de névoa. Logo, a deposição da parafina só ocorre, se a temperatura da interface parafina-óleo for inferior à temperatura de névoa. Variações na direção transversal ao escoamento z são desprezadas, já que a transferência de calor dominante assim como a deposição só ocorrem nas paredes horizontais.

O depósito de parafina é formado de uma matriz porosa formada pela parafina sólida e o óleo solvente. A porosidade do depósito é uma função complexa do mecanismo de deposição, sendo normalmente avaliada experimentalmente. Neste trabalho, por simplicidade considerou-se a porosidade média com sendo constante. Adicionalmente, desprezou-se a difusão de massa na fase sólida.

Resumindo, as seguintes hipóteses foram consideradas:

- Deposição da parafina governada por difusão molecular
- Fluido Newtoniano
- Fluido incompressível, com viscosidade absoluta constante
- Condutividade térmica e calor específico a pressão constante do fluido e da parafina iguais e constantes
 - Coeficiente de difusão molecular da parafina constante
 - Solubilidade da parafina dependente da temperatura
 - Escoamento laminar, uni-dimensional
 - Variações na direção transversal ao escoamento z desprezíveis

- Sem geração de energia
- Processo de deposição de parafina ocorre para temperaturas inferiores ao ponto de névoa
 - Depósito de parafina sólida com porosidade constante
 - Difusão de massa na fase sólida desprezível

À medida que o tempo passa, o aumento do depósito de parafina diminui a área transversal do duto retangular, A, aumentando a velocidade média u_m do escoamento.

A seguir o mecanismo de deposição selecionado é apresentado, assim como os detalhes dos dois modelos utilizados.

2.2.1

Modelagem do crescimento do depósito de parafina

O objetivo do trabalho é testar o modelo difusivo. A equação que modela a taxa de transporte por difusão molecular da parafina para a parede do duto é a lei de Fick, que avaliada na interface entre a parafina e o óleo é

$$\frac{dm_p}{dt} = -\rho_m \ D_m \ A_d \ \left(\frac{\partial \omega}{\partial y}\right)_{int},\tag{2-4}$$

onde m_p é a massa de parafina depositada, ρ_m é a massa específica da mistura , $A_d = dx$ b, é a área de deposição, onde dx é o comprimento do volume elementar e b é a largura do canal. D_m é o coeficiente de difusão da parafina líquida na mistura, ω é a fração volumétrica da parafina na solução e y é a coordenada vertical.

Para um volume de parafina depositado dv, a massa é dada por

$$dm_p = \rho_p \ (1 - \phi) \ dv. \tag{2-5}$$

onde ρ_p é a massa específica da parafina e ϕ é a porosidade definida como sendo a razão entre o volume ocupado pelo líquido no depósito sólido e o volume do depósito sólido. A utilização da equação encima considera a hipótese que o fluxo líquido difusivo de parafina na parede transforma-se no depósito sólido.

A variação do volume de parafina depositada dv é proporcional à velocidade do crescimento da espessura de parafina $\partial \delta/\partial t$, de acordo com

$$dv = A_d \frac{\partial \delta}{\partial t} dt. {(2-6)}$$

Logo o fluxo mássico de parafina depende da velocidade de crescimento da espessura da camada depositada $\partial \delta/\partial t$, da massa específica da parafina ρ_p , da largura do canal b, e da porosidade da parafina ϕ .

$$\dot{m_p} = \frac{dm_p}{dt} = \rho_p \ b \ dx \ (1 - \phi) \ \frac{\partial \delta}{\partial t}.$$
 (2-7)

Igualando a eq. (2-7) com a eq. (2-4) obtém-se:

$$\frac{\partial \delta}{\partial t} = \frac{-D_m}{(1 - \phi)} \frac{\rho_m}{\rho_p} \left(\frac{\partial \omega}{\partial y} \right)_{int}.$$
 (2-8)

De acordo com a eq. (2-8), é preciso avaliar o gradiente da fração volumétrica da parafina na interface $d\omega/dy|_{int}$, para o qual desenvolveu-se dois modelos difusivos. O primeiro modelo é mais simples, é unidimensional, e o gradiente de concentração é estimado a partir do gradiente de temperatura na interface. O segundo modelo é bidimensional, e o gradiente de fração volumétrica é avaliado diretamente, a partir do campo de concentração obtido com a solução de conservação da parafina dissolvida no óleo.

Baseadas nas hipóteses apresentadas, na seções seguintes as equações de conservação governantes são apresentadas para cada modelo.

2.3

Modelo Difusivo Unidimensional

O primeiro modelo difusivo é bem simples, além de ser unidimensional, não envolve a determinação do campo de fração volumétrica da parafina. Neste caso, utiliza-se a regra da cadeia para reescrever o gradiente da fração volumétrica da parafina na interface $(\partial \omega/\partial y|_{int})$, como sendo igual à variação da concentração volumétrica com a temperatura $(\partial \omega/\partial T|_{int})$ vezes o gradiente de temperatura na interface $(\partial T/\partial y_{int})$.

$$\left(\frac{\partial \omega}{\partial y}\right)_{int} = \left(\frac{\partial \omega}{\partial T}\right)_{int} \left(\frac{\partial T}{\partial y}\right)_{int}.$$
(2-9)

A variação da concentração volumétrica com a temperatura na interface é obtida a partir da curva de solubilidade da parafina em função da temperatura. Derivando a eq. (2-3) obtém-se

$$\left(\frac{\partial \omega}{\partial T}\right)_{int} = 5,24 \times 10^{-9} \times T_{int}^{4,13}.$$
 (2-10)

O gradiente de temperatura na interface é determinado a partir do fluxo de calor convectivo na interface q_{int} dado por

$$q_{int} = h_i \ b \ dx \ (T_m - T_{int}).$$
 (2-11)

onde T_m é a temperatura de mistura , T_{int} é a temperatura de interface, b é a largura do canal na direção transversal ao escoamento, fig. (2.6), h_i é o coeficiente de troca de calor entre o fluido e a superfície da interface. Logo, o gradiente da temperatura na interface pode ser obtido de

$$\left(\frac{\partial T}{\partial y}\right)_{int} = \frac{q_{int}}{k_m} = \frac{h_i}{k_m} \left(T_m - T_{int}\right) \tag{2-12}$$

onde k_m é a condutividade térmica da mistura.

Analisando a eq. (2-12), observa-se que é necessário determinar a temperatura de mistura T_m , a temperatura da interface, T_{int} , assim como o coeficiente de transferência de calor interno h_i , o que é apresentado a seguir.

2.3.1 Coeficiente de troca de calor da superfície interna, h_i .

O coeficiente de troca de calor na superfície interna do canal h_i , pode ser determinado a partir do número de Nusselt interno para um duto de seção retangular Nu_i

$$Nu_i = \frac{h_i D_h}{k_m}. (2-13)$$

onde k_m é a condutividade térmica da mistura, D_h é o diâmetro hidráulico, definido como:

$$D_h = \frac{4 A_t}{P_m} = \frac{2 b (a - 2 \delta)^2}{b + (a - 2 \delta)},$$
 (2-14)

onde P_m é o perímetro molhado, a é a altura do canal e δ a espessura do depósito.

O número de Nusselt local considerado corresponde a um fluxo em desenvolvimento térmico na região de entrada de um canal de placas paralelas com temperatura uniforme na parede. Shah *et al.* (1978), correlacionou a variação do número de Nusselt com a posição ao longo do canal retangular x, o diâmetro hidráulico D_h , o número de Reynolds **Re** e o número de Prandtl **Pr**, como ilustrado na fig. (2.7).

A partir do gráfico ajustou-se a seguinte equação para representar a variação de Nu_i como função de $X = \sqrt{(x D_h)/(\text{Re Pr})}$:

$$Nu_i = \frac{a + c X + e X^2 g X^3 + i X^4}{1 + b X + d X^2 + f X^3 + h X^4}$$
 (2-15)

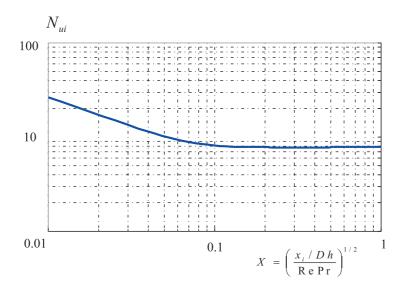


Figura 2.7: Número de Nusselt para um duto de placas paralelas e temperatura uniforme nas placas.

onde a=76; b=218; c=561; d=-796; e=1657; f=13034; g=77831; h=77252 e i=627426.

2.3.2 Temperatura da mistura, T_m .

Para determinar a temperatura da mistura é necessário resolver a equação de conservação energia aplicada ao volume de controle da fig. (2.8). Adicionalmente, como a área da seção transversal varia com o tempo e ao longo do canal, é preciso garantir que a massa se conserve ao longo do canal, respeitando a equação de conservação de massa.

Princípio da conservação de massa

O princípio de conservação de massa exige que a variação da massa com o tempo no interior do volume de controle somada ao fluxo líquido da massa através das superfícies de controle, seja nulo. A formulação matemática do princípio físico enunciado é

$$\frac{\partial}{\partial t} \int_{VC} \rho \ d\forall + \int_{SC} \rho \overrightarrow{u} \cdot \overrightarrow{n} dA = 0, \qquad (2-16)$$

onde ρ é a massa específica do fluido, \overrightarrow{u} o vetor velocidade, A_t a área da seção transversal da tubulação, $d\forall = Adx$ é o diferencial de volume, \overrightarrow{n} vetor unitário normal à superfície de controle, e a variável t denota o tempo.

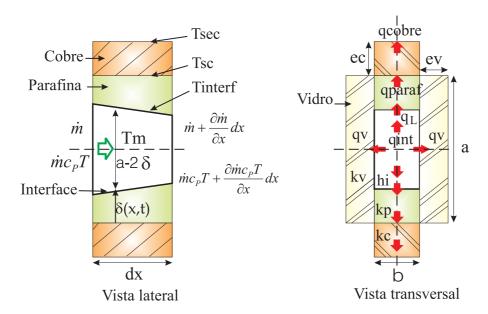


Figura 2.8: Vista lateral e transversal do volume de controle elementar considerado no modelo difusivo unidimensional.

A deposição de parafina origina uma variação na área transversal originando uma variação do fluxo mássico, \dot{m} , ao longo do duto. Este é dado por $\dot{m}=\rho_m\ u_m\ A_t$, onde ρ_m é a massa específica média da mistura, u_m é a velocidade média e $A_t=(a-2\ \delta)\ b$ é área transversal do duto retangular.

Aplicando a equação de conservação de massa (2-16) ao volume de controle infinitesimal, ilustrado na fig. (2.8), utilizando as hipóteses enunciadas, obtém-se

$$\rho_m \frac{\partial A_t}{\partial t} + \frac{\partial \dot{m}}{\partial x} = 0 \tag{2-17}$$

Princípio da conservação de energia

A variação no tempo da energia interna armazenada no volume de controle é igual à taxa líquida de energia transferida pelo escoamento do fluido mais a taxa líquida de calor transferido através da superfície de controle.

$$\frac{\partial}{\partial t} \int_{VC} \rho \ c_p \ T d \forall + \int_{SC} \rho \ c_p \ T \overrightarrow{u} \cdot \overrightarrow{n} \ dA = \int_{SC} \overrightarrow{q''} \cdot \overrightarrow{n} \ dA + \int_{VC} S_T d \forall, \ (2-18)$$

onde T é a temperatura do fluido, c_p é o calor específico a pressão constante do mesmo, \overrightarrow{q} é o fluxo de calor difusivo e S_T é a geração de calor por unidade de volume.

A aplicação da equação da conservação da energia eq. (2-18) ao volume de controle da fig. (2.8), com as hipóteses enunciadas, mostra que a variação da energia interna do fluido é igual a taxa de transferência de calor líquido por convecção na direção axial mais a transferência de calor por difusão através da interface e através da parede lateral de vidro.

$$\rho_m \frac{\partial A_t T_m}{\partial t} + \frac{\partial \dot{m} T_m}{\partial x} + \frac{2 q_{int} + 2 q_v}{c_{p_m} dx} = 0, \qquad (2-19)$$

onde T_m é a temperatura de mistura do fluido numa seção transversal, c_{p_m} é o calor especifico da mistura, q_{int} e q_v indicam o fluxo de calor que é transferido através da interface e através do vidro respectivamente.

O taxa de transferência de calor através do vidro q_v é dado por

$$q_v = U_v (a - 2 \delta)(T_m - T_\infty)dx.$$
 (2-20)

onde T_{∞} é a temperatura do ambiente e U_v é o coeficiente global de troca de calor entre o fluido e o ambiente. O coeficiente global de troca de calor no vidro U_v , depende do coeficiente de troca de calor da superfície interna do canal h_i , da espessura do vidro e_v e da condutividade térmica do vidro k_v . Considerou-se a temperatura da superfície externa do vidro, como sendo igual a temperatura ambiente, portanto, com resistência térmica desprezível.

$$U_v = \left(\frac{1}{h_i} + \frac{e_v}{k_v}\right)^{-1}.$$
 (2-21)

A temperatura de mistura do fluido numa seção transversal T_m pode ser determinada através da solução da equação da energia eq. (2-19).

2.3.3 Temperatura na interface, T_{int} .

A temperatura na interface pode ser determinada através de um balanço de energia na interface, onde o fluxo de calor por condução na interface do lado da mistura q_{int} é a soma do fluxo de calor por condução que atravessa a parafina sólida q_{wax} e calor utilizado para a mudança de fase q_L , como observado na fig. (2.8).

$$q_{int} = q_{wax} + q_L, (2-22)$$

O fluxo de calor por condução na interface da parafina sólida é estimado desprezando a capacidade térmica da parafina depositada e do cobre, i.e., considerando um perfil linear da temperatura ao longo da

espessura da parafina e do cobre. A resistência térmica entre o cobre e água também é desprezada, logo a superfície externa do cobre possui temperatura igual a da água.

$$q_{wax} = \frac{(T_{int} - T_{H_2O}) \ b \ dx}{(\delta/k_p) + (e_c/k_c)}.$$
 (2-23)

onde k_p e k_c são as condutividades térmicas da parafina e cobre, respectivamente, δ é a espessura da parafina depositada, e_c é a espessura da parade de cobre, T_{int} é a temperatura da interface e T_{H_2O} é a temperatura da água.

O calor utilizado para a mudança de fase depende do calor latente λ , e do fluxo de massa de parafina depositada \dot{m}_p , eq. (2-7), logo

$$q_L = \dot{m_p} \times \lambda = \rho_p \ \lambda \ b \ dx \ (1 - \phi) \ \frac{\partial \delta}{\partial t}.$$
 (2-24)

Substituindo as eqs. (2-11), (2-23) e (2-24) na eq. (2-22), obtém-se o valor da temperatura na interface:

$$T_{int} = \frac{h_i T_m - \rho_p \ \lambda \ (1 - \phi) \ (\partial \delta / \partial t) + T_{H_2O} \ Res^{-1}}{h_i + Res^{-1}}$$
(2-25)

onde

$$Res = \left(\frac{e_c}{k_c} + \frac{\delta}{k_p}\right) \tag{2-26}$$

Note que, se a temperatura da interface for acima da temperatura de Névoa (TIAC), não haverá deposição de parafina, logo a espessura será zero, assim como o fluxo de massa depositada. Neste caso, a temperatura da interface coincide com a temperatura da superfície interna do cobre, sendo igual a

$$T_{int} = \frac{h_i T_m + T_{H_2O}(k_c/e_c)}{h_i + (k_c/e_c)}$$
 (2-27)

2.3.4 Cálculo da espessura depositada de parafina

Para determinar a espessura de parafina depositada é necessário combinar as informações apresentadas nas seções anteriores. Portanto, substituindo o gradiente de concentração por sua expressão aproximada, eq. (2-9), juntamente com a equação para o fluxo de calor convectivo, eq. (2-11) na equação para a taxa de crescimento da espessura da parafina, eq. (2-8), tem-se

$$\frac{\partial \delta}{\partial t} = \beta \frac{h_i}{k_m} (T_m - T_{int}). \tag{2-28}$$

onde

$$\beta = \frac{-D_m}{(1 - \phi)} \frac{\rho_m}{\rho_p} \frac{\partial \omega}{\partial T}.$$
 (2-29)

Substituindo a equação para avaliar a temperatura da interface, eq. (2-25), a qual é função da taxa de crescimento da deposição, e rearrumando tem-se

$$\frac{\partial \delta}{\partial t} = \frac{(T_m - T_{H_2O})}{\gamma \left[1 + h_i \left(e_c/k_c + \delta/k_p\right)\right]}$$
(2-30)

onde

$$\gamma = \frac{k_m}{h_i \beta} - \frac{\rho_m \lambda (1 - \phi)}{h_i + (e_c/k_c + \delta/k_p)^{-1}}$$
(2-31)

2.3.5 Condições inicial e de contorno

Como já mencionado a condição inicial do problema consistiu na solução do problema após atingir regime permanente, com a água quente no banho termostático. Neste caso, devido às altas temperaturas envolvidas, não há deposição de parafina. Logo, a velocidade média é constante ao longo do domínio. Já a temperatura apresenta uma pequena queda, devido a perda de calor para o ambiente.

Como condição de contorno, somente a condição na entrada do domínio é necessária, sendo especificado o valor da velocidade média e temperatura de mistura com os mesmo valores que na experiência realizada por Leiroz (2004).

2.4

Modelo Difusivo Bidimensional

Este modelo também é baseado na Lei de Fick, porém, algumas das limitações do modelo anterior foram eliminadas. Considerou-se o escoamento como sendo bidimensional, desprezando-se variações ao longo da direção transversal z, porém considerando variações na direção vertical y. Neste caso o crescimento do depósito de parafina dado pela eq. (2-8) é calculado diretamente pelo gradiente da fração volumétrica na interface $(\partial \omega/\partial y)|_{int}$. Logo, tornou-se necessário resolver uma equação adicional, a equação de conservação de fração de massa de parafina dissolvida na mistura.

Visando uma análise simplificada, considerou-se o campo de velocidade com somente uma componente de velocidade. Na entrada do canal, especificou-se um perfil correspondente a um escoamento laminar, hidrodinâmicamente desenvolvido

$$\overrightarrow{u} = u \overrightarrow{i}$$
 ; $u = \frac{3}{2} u_m \left[1 - \left(\frac{y}{a/2 - \delta} \right)^2 \right]$. (2-32)

Porém, como no caso anterior, devido à variação da área, foi necessário considerar a variação da velocidade com a direção axial. Também como no caso anterior, a determinação do campo de velocidade pode ser obtida simplesmente a partir da equação da conservação de massa.

Como a deposição da parafina depende da temperatura, também foi necessário resolver a equação da energia para o fluido. Adicionalmente, considerou-se a influência da capacidade térmica da parafina sólida, assim como da parede de cobre, o que implicou na solução da equação da energia nestas regiões.

Devido à simetria do problema, a fig. (2.9) representa a parte inferior do volume de controle elementar mostrado na fig. (2.6). Nesta figura mostrase a região do fluido, a região da parafina e a região do cobre. Para cada região, apresenta-se um volume de controle infinitesimal, os quais possuem um mesmo dx e onde são aplicadas as equações de conservação de massa, eq. (2-16), energia, eq. (2-18) e conservação da fração volumétrica, eq. (2-33)

$$\frac{\partial}{\partial t} \int_{VC} \rho \ \omega \ d\forall + \int_{SC} \rho \ \omega \ \overrightarrow{u} \cdot \overrightarrow{n} \ dA = \int_{SC} \overrightarrow{m}^{"} \cdot \overrightarrow{n} \ dA + \int_{VC} S_{\omega} d\forall, \ (2-33)$$

onde ω é a fração de massa da parafina, \overrightarrow{m} " é o fluxo difusivo da fração volumétrica e S_{ω} é a fonte de fração volumétrica.

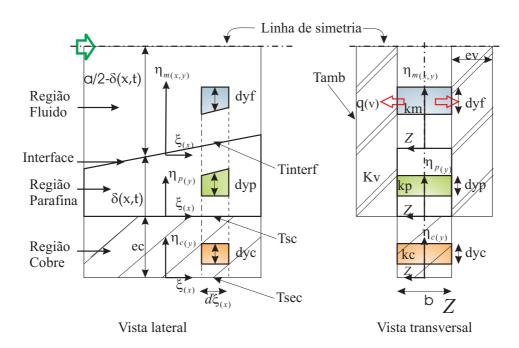


Figura 2.9: Vista lateral e transversal dos volumes de controle tanto para a região do fluido, parafina e cobre, que são considerados no modelo difusivo bidimensional.

Com a modelagem bidimensional, observa-se que o domínio de cálculo não é mais uniforme e que coordenadas curvilíneas devem ser utilizadas, para se adaptarem as fronteiras líquido/sólido. Observa-se também, que devido a deposição da parafina, o domínio de cálculo do escoamento apresenta tamanho variável no tempo, o que dificulta a análise. À medida que a espessura da parafina depositada cresce, o tamanho do domínio para a solução da equação de condução de calor para a parafina cresce, enquanto que o tamanho do domínio do fluido diminui. Considerou-se então uma variável adimensional η para cada região. Para o fluido, definiu-se

$$\eta = \frac{y - \delta}{a/2 - \delta} \tag{2-34}$$

enquanto que para a parafina, utilizou-se

$$\eta = \frac{y}{\delta} \tag{2-35}$$

Para obter as equações de conservação bi-dimensionais, utilizando as coordenadas curvilíneas móveis (ver fig. (2.9)), definiu-se então a seguinte transformação de coordenadas para que o domínio de cálculo fosse constante, isto é,

$$\xi = \xi(x) = x$$
 ; $\eta = \eta(x, y, t)$; $\tau = \tau(t) = t$ (2-36)

2.4.1

Formulação em sistemas coordenadas móveis

O sistema de coordenadas adotado é aquele onde suas coordenadas adaptam-se ao contorno da geometria e, quando existe movimento de fronteira e/ou interface, sua velocidade de deslocamento. Este sistema de coordenadas móvel é relacionado como o sistema cartesiano e com o tempo pelas eqs. (2-36).

As equações de conservação podem ser escritas no novo sistema de coordenadas, utilizando-se as seguintes relações:

$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial \phi}{\partial \tau} \frac{\partial \tau}{\partial x} = \frac{\partial \phi}{\partial \xi} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial x}$$
(2-37)

$$\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial \phi}{\partial \tau} \frac{\partial \tau}{\partial y} = \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial y}$$
(2-38)

$$\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t} + \frac{\partial \phi}{\partial \tau} \frac{\partial \tau}{\partial t} = \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t} + \frac{\partial \phi}{\partial \tau}$$
(2-39)

O Jacobiano da transformação é dado por:

$$Ja = \frac{\partial x}{\partial \xi} \left(\frac{\partial y}{\partial \eta} \frac{\partial t}{\partial \tau} - \frac{\partial y}{\partial \tau} \frac{\partial t}{\partial \eta} \right) + \frac{\partial x}{\partial \eta} \left(\frac{\partial y}{\partial \tau} \frac{\partial t}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial t}{\partial \tau} \right)$$

$$+ \frac{\partial x}{\partial \tau} \left(\frac{\partial y}{\partial \xi} \frac{\partial t}{\partial \eta} - \frac{\partial y}{\partial \eta} \frac{\partial t}{\partial \xi} \right) = \frac{\partial y}{\partial \eta}$$

$$(2-40)$$

Como mencionado, o movimento do fluido só acontece na direção axial x, logo o componente de velocidade na direção vertical v é nulo. Por outro lado, as coordenadas só se movem na direção vertical, i.e., o vetor velocidade do sistema de coordenadas só apresenta componente vertical.

$$\overrightarrow{u} = u\overrightarrow{i} + v\overrightarrow{j} \qquad ; \qquad v = 0 \tag{2-41}$$

$$\overrightarrow{u_g} = u_g \overrightarrow{i} + v_g \overrightarrow{j}$$
 ; $u_g = \frac{\partial x}{\partial \tau} = 0$; $v_g = \frac{\partial y}{\partial \tau}$ (2-42)

A seguir, são apresentadas as equações de conservação para o novo sistema de coordenadas.

2.4.2

Equação de conservação de massa

A equação de conservação de massa, eq. (2-16), aplicada ao volume de controle infinitesimal ilustrado na fig. (2.9), considerando o fluido incompressível e utilizando o sistema de coordenadas curvilíneo e móvel é apresentada a seguir.

$$\frac{\partial Ja}{\partial \tau} + \frac{\partial (h_{\eta}\tilde{U})}{\partial \xi} + \frac{\partial (h_{\xi}\tilde{V})}{\partial \eta} = 0$$
 (2-43)

onde h_{ξ} e h_{η} são as métricas resultantes da mudança de sistema de coordenadas, que de acordo à relação (2-36), são dadas por:

$$h_{\xi} = \left[\left(\frac{\partial x}{\partial \xi} \right)^2 + \left(\frac{\partial y}{\partial \xi} \right)^2 \right]^{1/2} = \left[1 + \left(\frac{\partial y}{\partial \xi} \right)^2 \right]^{1/2} = \left[1 + \left(Ja \frac{\partial \eta}{\partial x} \right)^2 \right]^{1/2}$$
(2-44)

$$h_{\eta} = \left[\left(\frac{\partial x}{\partial \eta} \right)^2 + \left(\frac{\partial y}{\partial \eta} \right)^2 \right]^{1/2} = Ja = \left(\frac{\partial y}{\partial \eta} \right)$$
 (2-45)

 \tilde{U} e \tilde{V} representam os componentes contravariantes da velocidade relativa nas direções ξ e η , respectivamente e, são dados por:

$$\tilde{U} = U - U_g \tag{2-46}$$

$$\tilde{V} = V - V_g \tag{2-47}$$

U e V são os componentes contravariantes da velocidade absoluta, e são relacionados com os componentes cartesianos pelas seguintes relações:

$$U = \frac{1}{h_n} \left(u \frac{\partial y}{\partial \eta} - v \frac{\partial x}{\partial \eta} \right) = u \tag{2-48}$$

$$V = \frac{1}{h_{\xi}} \left(-u \frac{\partial y}{\partial \xi} + v \frac{\partial x}{\partial \xi} \right) = -u \frac{Ja}{h_{\xi}} \frac{\partial \eta}{\partial x}$$
 (2-49)

 U_g e V_g são os componentes contravariantes da velocidade devida ao movimento das coordenadas, que de acordo às relação (2-42), são dados por:

$$U_g = \frac{1}{h_\eta} \left(u_g \frac{\partial y}{\partial \eta} - v_g \frac{\partial x}{\partial \eta} \right) = 0 \tag{2-50}$$

$$V_g = \frac{1}{h_{\xi}} \left(-u_g \frac{\partial y}{\partial \xi} + v_g \frac{\partial x}{\partial \xi} \right) = \frac{1}{h_{\xi}} \left(\frac{\partial y}{\partial \tau} \right)$$
 (2-51)

Substituindo as eqs. (2-48), (2-50) na eq. (2-46) e as eqs. (2-49), (2-51) na eq. (2-47), os novas componentes contravariantes da velocidade relativa são:

$$\tilde{U} = u \tag{2-52}$$

$$\tilde{V} = -\frac{1}{h_{\xi}} \left(u \, Ja \frac{\partial \eta}{\partial x} + \frac{\partial y}{\partial \tau} \right) \tag{2-53}$$

2.4.3

Conservação de energia

A seguir a equação de conservação de energia, eq. (2-18), é integrada num volume de controle correspondente a cada região, como mostrado na fig. (2.9).

Para a região do fluido, a equação de conservação de energia, eq. (2-18), no sistema de coordenadas adotado e com as hipóteses apresentadas pode ser escrita como:

$$\frac{\partial (Ja \ T_m)}{\partial \tau} + \frac{\partial}{\partial \xi} \left(h_{\eta} \ \tilde{U} \ T_m \right) + \frac{\partial}{\partial \eta} \left(h_{\xi} \ \tilde{V} \ T_m \right) =$$

$$= \alpha_m \frac{\partial}{\partial \xi} \left(\frac{\vartheta_{\xi}}{h_{\xi}} \frac{\partial T_m}{\partial \xi} - \frac{\beta_{\xi}}{h_{\eta}} \frac{\partial T_m}{\partial \eta} \right) +$$

$$+ \alpha_m \frac{\partial}{\partial \eta} \left(\frac{\vartheta_{\eta}}{h_{\eta}} \frac{\partial T_m}{\partial \eta} - \frac{\beta_{\eta}}{h_{\xi}} \frac{\partial T_m}{\partial \xi} \right) + \frac{q"_v \ Ja}{\rho_m \ c_{v_m}}$$

onde $\alpha_m = k_m/(\rho_m \ c_{p_m})$ é a difusividade térmica do fluido. $q"_v = U_v(T_m - T_\infty)$ é o fluxo por unidade de área através dos vidros laterais. ϑ_ξ e β_ξ são parâmetros geométricos dados por

$$\vartheta_{\eta} = \frac{h_{\xi}^2 h_{\eta}}{Ja} \quad ; \quad \vartheta_{\xi} = \frac{h_{\eta}^2 h_{\xi}}{Ja} \tag{2-55}$$

$$\beta_{\eta} = \vartheta_{\eta}(\overrightarrow{e_{\xi}} \cdot \overrightarrow{e_{\eta}}) \quad ; \quad \beta_{\xi} = \vartheta_{\xi}(\overrightarrow{e_{\xi}} \cdot \overrightarrow{e_{\eta}})$$
 (2-56)

$$(\overrightarrow{e_{\xi}} \cdot \overrightarrow{e_{\eta}}) = \frac{1}{h_{\xi} h_{\eta}} \left(\frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} + \frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta} \right) = -\frac{Ja}{h_{\xi}} \frac{\partial \eta}{\partial x}$$
(2-57)

Neste caso, a coordenada móvel η é definida como

$$\eta = \eta_m = \frac{y - \delta(x, t)}{a/2 - \delta(x, t)} \tag{2-58}$$

sendo

$$\frac{\partial \eta}{\partial y} = \frac{1}{a/2 - \delta} \quad ; \quad \frac{\partial \eta}{\partial x} = \frac{\eta - 1}{a/2 - \delta} \frac{\partial \delta}{\partial x} \tag{2-59}$$

$$\frac{\partial y}{\partial \tau} = \frac{\partial \delta}{\partial t} (1 - \eta) \quad ; \quad Ja = (a/2 - \delta) \tag{2-60}$$

Para a região da parafina, como não há movimento no sólido, o vetor velocidade absoluta é nulo, porém, devido ao movimento da malha, existe um componente contravariante não nulo na direção η . A equação de conservação de energia, eq. (2-18), no sistema de coordenadas adotado é apresentada como:

$$\frac{\partial(Ja T_p)}{\partial \tau} - \frac{\partial}{\partial \eta} (h_{\xi} V_g T_p) = \frac{k_v/e_v}{\rho_p cp_p} Ja (T_p - T_{\infty}) \qquad (2-61)$$

$$+\alpha_p \frac{\partial}{\partial \xi} \left(\frac{\vartheta_{\xi}}{h_{\xi}} \frac{\partial T_p}{\partial \xi} - \frac{\beta_{\xi}}{h_{\eta}} \frac{\partial T_p}{\partial \eta} \right) + \alpha_p \frac{\partial}{\partial \eta} \left(\frac{\vartheta_{\eta}}{h_{\eta}} \frac{\partial T_p}{\partial \eta} - \frac{\beta_{\eta}}{h_{\xi}} \frac{\partial T_p}{\partial \xi} \right)$$

onde $\alpha_p = k_p/(\rho_p \ c_{p_p})$ é a difusividade térmica da parafina. Os parâmetros geométricos são definidos pelas eqs. (2-55) a (2-57). A função que relaciona a coordenada móvel em η , com a coordenada cartesiana em y, para a região da parafina, está dada por:

$$\eta = \eta_p = \frac{y}{\delta(x, t)} \tag{2-62}$$

sendo

$$\frac{\partial \eta}{\partial y} = \frac{1}{\delta} \quad ; \quad \frac{\partial \eta}{\partial x} = \frac{-\eta}{\delta} \frac{\partial \delta}{\partial x} \quad ; \quad \frac{\partial y}{\partial \tau} = \eta \frac{\partial \delta}{\partial t} \quad ; \quad Ja = \delta \tag{2-63}$$

Para a região do cobre, não há velocidade relativa nas direções ξ e η , logo, ($\tilde{U}=0$ e $\tilde{V}=0$). Vale mencionar que quando a malha é ortogonal, o produto escalar entre os unitários é nulo, logo β_{ξ} e β_{η} também são nulos. A equação de conservação de energia, eq. (2-18), no sistema de coordenadas adotado é apresentada como:

$$\frac{\partial T_c}{\partial \tau} = \alpha_c \frac{\partial}{\partial \xi} \left(\frac{\partial T_c}{\partial \xi} \right) + \alpha_c \frac{\partial}{\partial \eta} \left(\frac{\partial T_c}{\partial \eta} \right)$$
 (2-64)

onde $\alpha_c = k_c/(\rho_c \ c_{p_c})$ é a difusividade térmica do cobre. A função que relaciona a coordenada η , com a coordenada cartesiana em y, para a região do cobre, está dada por:

$$\eta = \eta_c = \frac{y_c}{e_c} \tag{2-65}$$

2.4.4 Conservação da fração volumétrica

A seguir a equação de conservação da fração de massa eq. (2-16), é integrada num volume de controle correspondente à região do fluido fig. (2.9). No sistema de coordenadas adotado é apresentada como:

$$\frac{\partial (Ja \ \omega)}{\partial \tau} + \frac{\partial}{\partial \xi} \left(h_{\eta} \ \tilde{U} \ \omega \right) + \frac{\partial}{\partial \eta} \left(h_{\xi} \tilde{V} \omega \right) = \qquad (2-66)$$

$$= D_{m} \frac{\partial}{\partial \xi} \left(\frac{\vartheta_{\xi}}{h_{\xi}} \frac{\partial \omega}{\partial \xi} - \frac{\beta_{\xi}}{h_{\eta}} \frac{\partial \omega}{\partial \eta} \right) + D_{m} \frac{\partial}{\partial \eta} \left(\frac{\vartheta_{\eta}}{h_{\eta}} \frac{\partial \omega}{\partial \eta} - \frac{\beta_{\eta}}{h_{\xi}} \frac{\partial \omega}{\partial \xi} \right),$$

onde ω é a fração de massa e D_m é o coeficiente de difusão da parafina líquida no petróleo.

2.4.5 Condições iniciais e de contorno

As condições iniciais são as mesmas do caso anterior, i.e., condições de regime permanente, obtida com a água do banho termostático quente, igual a temperatura da mistura óleo-parafina na entrada.

Na entrada do canal especifica-se vazão em massa constante, com temperatura uniforme na seção transversal e constante com o tempo e superior à TIAC.

A condição de contorno para a equação da continuidade, consiste em um perfil parabólico na entrada, condição de não deslizamento do fluido em contato com as superfícies sólidas e de simetria no centro do canal.

Com relação à equação da energia, as condições de contorno entre cada duas regiões são as condições de compatibilidade de fluxos de calor, sendo que na interface parafina sólida e mistura, o balanço de energia dado pela eq. (2-22) considerando o calor latente deve ser utilizado. No centro do canal tem-se simetria. A parede externa do cobre é considerada possuir a mesma temperatura que a água. Desprezou-se a difusão axial na saída da seção de teste.

A concentração da parafina dissolvida no óleo é constante na seção da entrada. No plano de simetria, o fluxo de concentração é nulo e na interface é exatamente o fluxo que desejamos determinar, dado pela eq.(2-4).